sábado, 8 de octubre de 2011

Enlace quimico


ENLACE IÓNICO
Los compuestos iónicos resultan normalmente de la reacción de un metal de bajo potencial de ionización, con un no metal. Los electrones se transfieren del metal al no metal, dando lugar a cationes y aniones, respectivamente. Estos se mantienen unidos por fuerzas electrostáticas fuertes llamadas enlaces iónicos.

NATURALEZA DEL ENLACE COVALENTE
El enlace de tipo covalente se produce entre elementos no metálicos, o no metálicos con el hidrógeno, es decir entre átomos de electronegatividades semejantes y altas en general. Se debe generalmente a la compartición de electrones entre los distintos átomos. En algunos casos puede darse un enlace covalente coordinado o dativo, en el que uno sólo de los átomos cede los dos electrones con que se forma el enlace.
ESTRUCTURAS DE LEWIS, REGLA DEL OCTETO.
Lewis fue uno de los primeros en intentar proponer una teoría para explicar el enlace covalente, por ello creo notaciones abreviadas para una descripción más fácil de las uniones atómicas, que fueron las estructuras de Lewis. Para dibujar las estructuras de Lewis se puede seguir el siguiente método:
  1. Se colocan los átomos de la molécula de la forma más simétrica posible.
  2. Se determina el nº de electrones disponibles en la capa externa de los átomos de la molécula.A
  3. Se calcula la capacidad total de electrones de las capas externas de todos los átomos de la molécula.N
  4. El nº total de electrones compartidos es S=N-A
  5. Se colocan los electrones S como pares compartidos entre los átomos que forman enlaces.
  6. El resto de los electrones A-S se colocan como pares no compartidos para completar el octeto de todos los átomos.
Así lograríamos que todos los átomos unidos por enlaces covalentes tiendan a adquirir la estructura de los gases nobles, esta es la regla de Octeto.PROPIEDADES DE LOS ENLACES.

  1. Propiedades de las sustancias iónicas:
    • Las sustancias iónicas se encuentran en la naturaleza formando redes cristalinas, por tanto son sólidas.
    • Su dureza es bastante grande, y tienen por lo tanto puntos de fusión y ebullición altos.
    • Son solubles en disolventes polares como el agua.
    • Cuando se tratan de sustancias disueltas tienen una conductividad alta.
  2. Propiedades de los compuestos covalentes.
    • Los compuestos covalentes suelen presentarse en estado líquido o gaseoso aunque también pueden ser sólidos. Por lo tanto sus puntos de fusión y ebullición no son elevados.
    • La solubilidad de estos compuestos es elevada en disolventes polares, y nula su capacidad conductora.
    • Los sólidos covalentes macromoleculares, tienen altos puntos de fusión y ebullición, son duros, malos conductores y en general insolubles.
  3. Los enlaces metálicos:
    • Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y sus puntos de fusión y ebullición varían notablemente.
    • Las conductividades térmicas y eléctricas son muy elevadas.
    • Presentan brillo metálico.
    • Son dúctiles y maleables.
    • Pueden emitir electrones cuando reciben energía en forma de calor.
ENLACE METÁLICO.
El enlace metálico es el que mantiene unido a los átomos de los metáles entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de redes tridimensionales muy compactas.

Unidades 3 - 4

La envoltura de atomos

La determinación de la disposición de los electrones alrededor del nucleo atómico ha sido un inmenso logro de científicos de las Matemáticas, la Física y la Química. Los resultados de las investigaciones muestran aspectos sorprendentes de la naturaleza de la materia y la energía. Estos aspectos, en relación al atomo, permiten fundamentalmente la comprensión del comportamiento químico de las sustancias.

LAS ONDAS ELECTROMAGNETICAS Y LA ENERGÍA
Las ondas electromagnéticas son campos eléctricos (E) y magnéticos (H) variables, oscilantes y mutuamente perpendiculares que se desplazan por el espacio y se relacionan íntimamente con el concepto de energía.




MAGNITUDES Y CUALIDADES DE LAS ONDAS
A = Amplitud de la onda (La mayor oscilación respecto de la posición de equilibrio)

c = velocidad de propagación de la onda ( cm/ seg)

l = longitud de onda ( lambda) desplazamiento del frente de onda en un ciclo (cm)

T = Período ( tiempo de un ciclo ) (seg)

n = frecuencia ( nu ) = 1/T seg –1 = ciclos/seg = Hertz

Ecuación fundamental l = c T


Un fenómeno inherente a la naturaleza de las ondas es la interferencia. Es decir, si las ondas se encuentran en fase se suman sus amplitudes, en cambio si las ondas están desfasadas se anulan mutuamente y la amplitud de la onda resultante puede ser nula.

El fenómeno de la difracción de las ondas es una clara manifestación de la propiedad de interferencia de las ondas. Los ribetes de claridad y oscuridad que acompañan la sombra de los bordes de la hoja de afeitar son consecuencia del fenómeno de la difracción y prueban la naturaleza ondulatoria de la luz.

según la FISICA CLASICA

LA ENERGÍA ERA DE NATURALEZA CONTINUA


Y LA ENERGÍA DE UNA ONDA ELECTROMAGNÉTICA

ERA PROPORCIONAL A LA AMPLITUD DE LA ONDA.


FÍSICA MODERNA

LA ENERGÍA ES DE CARACTER DISCONTÍNUO



SE PRESENTA A LA FORMA DE PEQUEÑOS

"PAQUETES DE ENERGÍA "

QUE SE DENOMINAN CUANTOS, CUANTAS O FOTONES

LA ENERGÍA DE UNA ONDA ELECTROMAGNÉTICA ES PROPORCIONAL A SU FRECUENCIA


ECUACIÓN DE MAX PLANCK
ENERGÍA DE UN FOTÓN = h n

h = Constante de Planck = 6,62 10 -27 erg. seg



EL ATOMO DE HIDROGENO DE BOHR
(Principios Básicos de Química H.Gray)

1) Orbitas circulares

2) Momento angular = m e v r = n h / 2 p n = 1,2,3...........a


Energía asociada a los cambios de órbita





LA MECANICA CUANTICA ONDULATORIA
Efecto Compton


DUALISMO ONDA- PARTÍCULA


PRINCIPIO DE INCERTIDUMBRE DE HEISSENBERG


Es imposible conocer simultáneamente la posición x y el momento p de un electrón

D x D p = l . h / l = h > 0


ECUACION ONDA PARTÍCULA DE SCHRODINGER


Ecuación diferencial de 2° orden para sistemas onda partícula, en tres dimensiones e independiente del tiempo donde:

h = constante de Planck,

y = Amplitud de la onda,

m = masa dela partícula

x,y,z = coordenadas de posición,

V(x,y,z ) = Energía Potencial,

E = Energía de la partícula


Resolver la ecuación es, lograr por integración, expresiones para:

y = f (x,y,z) ; E = g (x,y,z)


LOS NUMEROS CUANTICOS, SU SIGNIFICADO,

SUS VALORES Y REGLAS DE COMBINACIÓN

n = Número cuántico principal.
Se asocia al tamaño y energia de los orbitales

¿Cuántos valores? infinito

¿Cuáles? 1,2 3,4,..............a ( Es el mismo n del átomo de Bohr)



l = Número cuántico secundario
Se asocia al tipo o forma de los orbitales

¿Cuántos valores? n

¿Cuáles? 0, 1, 2, 3, .........(n-1)

s p d f

Cada uno de los cuatro primeros valores se asocian respectivamente a las letras que se indican.


m = Numero cuántico magnético.
Se asocia con la orientación espacial de los orbitales

¿Cuántos valores? 2l +1

¿Cuáles? - l, - ( l-1 ), .... -1, 0, 1, ......+ ( l-1 ), + l



s = Numero cuántico de spín electrónico.
Se asocia al giro del electrón sobre su eje

¿Cuántos valores? 2

¿Cuáles? - 1 / 2 , + 1 / 2


ATOMOS POLIELECTRÓNICOS
Ante la imposibilidad de resolver la ecuación de Schorodinger para sistemas de varios electrones, se ha supuesto y con éxito, que sucesivos electrones adoptarán los diversos modos de vibración que se encontraron para el electrón de átomo de Hidrógeno.

En palabras más simples, los sucesivos electrones se ubicaran en los orbitales ya determinados para el átomo de Hidrógeno y de acuerdo a las siguientes reglas.


Principio de exclusión de Pauli



No puede haber 2 electrones con los 4 números cuánticos iguales. Es equivalente a establecer que un orbital acepta un máximo de 2 electrones.


Principio de Estabilidad o menor Energía
Regla de Ta o de las diagonales.
Los electrones se ubican primero en los orbitales de menor energía.

Son de menor energía los de menor valor de n + l.

A igualdad de n + l se considera de menor energía los de menor n.


Diagonales indican el orden de llenado ( energía creciente)


PROPIEDADES MAGNETICAS DE LAS SUSTANCIAS
Parece conveniente indicar en este momento que el principio de Hund promueve la situación que existan orbitales con un sólo electrón o electrón desapareado. Esta circunstancia tiene una importante consecuencia en las propiedades magnéticas de los elementos. Aquellas sustancias que poseen orbitales con electrones desapareados ( spin - 1/2) tienen propiedades paramagnéticas, esto es, los campos magnéticos de spín se suman, refuerzan o atraen los campos magnéticos externos, las sustancia son imantables.

De no suceder así, es decir, si todos los orbitales tienen electrones apareados ( spin + 1/2 y - 1/2 ) es una circunstancia que determina el diamagnetismo, la sustancia repele campos magnéticos externos y las sustancias no son imantables.


CONFIGURACIONES ELECTRÓNICAS Y ELECTRONES DE VALENCIA


Los electrones de valencia son aquellos que se encuentran en los orbitales de mayor número cuántico principal más aquellos que están en orbitales con el número cuántico principal anterior al mayor a condición de estar incompletos.



SISTEMA PERIODICO DE LOS ELEMENTOS
Ubicación de los Números Atómicos por Configuraciones Electrónicas.



¿ Cuál es la configuración electrónica detallada del elemento cuyo Z = 77 ?

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2 5d2 5d1 5d1 5d1


¿Cuales son electrones de valencia?

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d2 5d2 5d1 5d1 5d1

¿Cuales son los números cuánticos del último electrón ?

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d!¡ 5d!¡ 5d! 5d! 5d!

n= 5 l =2 m= -1 s = + 1/2



PROPIEDADES PERIODICAS DE LOS ELEMENTOS

CUADRO PERIÓDICO




PROPIEDADES PERIODICAS DE LOS ELEMENTOS
La repetición de las configuraciones electrónicas y la consiguiente conformación de un sistema de períodos y grupos es el fenómeno de carácter periódico más relevante. Sin embargo, hay otras propiedades atómicas importantes afectadas de carácter periódico.



El RADIO ATOMICO (R.A.)
Es la distancia entre el núcleo del átomo y el electrón periférico.

El siguiente gráfico muestra elocuentemente la variación periódica del Radio Atómico al avanzar el Número Atómico en los elementos. Se observa que los picks de mayor Radio Atómico corresponde a los metales alcalinos.



El RadioAtómico disminuye "suavemente" al Aumentar Z en un Período.
El Radio Atómico aumenta "bruscamente" al aumentar Z en un Grupo o familia.

Los iones son atomos cargados eléctricamente que resultan de ganar o perder electrones.El Radio de lo iones es diferente al de los atomos neutros. Los iones negativos ( ganan electrones) son de mayor Radio, en cambio los positivos, ( pierden electrones) son menor Radio.

Diagrama de radios atómicos y radios iónicos



Las estructuras isoelectrónicas, son iones positivos o negativos o bien átomos neutros que poseen igual configuración electrónica ( igual número de electrones ). Puede pensarse, que por ésta razón, el Radio de las estructuras isoelectrónicas debe ser el mismo. No es así, pues, al igual que acontece con la disminución de los radios en un Período, la carga positiva en el nucleo es diferente. A mayor Z menor Radio.


EL POTENCIAL DE IONIZACIÓN ( P . I .)

Es la Energía que se necesita para arrancar el electrón periférico a un átomo neutro libre.

A 0 (g) + POTENCIAL DE IONIZACIÓN = A+ 1 (g) + e-


Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Energía de Ionización se comporta en forma inversa a la del Radio Atómico.


LA ELECTROAFINIDAD ( E . A .)


Es la Energía que se libera cuando un átomo libre y neutro capta un electrón .

A 0 (g) + e- = A-1 (g) + ELECTROAFINIDAD

Mientras más cercano al nucleo, el electrón periférico es atraído con mayor fuerza y viciversa. En consecuencia la magnitud de la Electroafinidad se comporta en forma inversa a la del Radio Atómico .

No cuenta para los gases nobles.



LA ELECTRONEGATIVIDAD ( E. N.)

La Electronegatividad es una magnitud que engloba tanto al P.I como a la E.A. y, en consecuencia, es proporcional a ambas. De la misma forma que las magnitudes anteriores se comporta en forma inversa al Radio Atómico
Mide la tendencia a formar iones negativos o bien la capacidad de atraer electrones.

La electronegatividad máxima es la del Fluor e igual a 4. No cuenta para los gases nobles.


LA ELECTROPOSITIVIDAD ( E. P .)
La Electropositividad es una magnitud de sentido inverso de la E. N.
Mide la tendencia a formar iones positivos o bien la capacidad de perder, ceder o repeler electrones.

Tampoco cuenta para los gases nobles.

LA FORMACIÓN DE LOS IONES
Las propiedades periódicas recién estudiadas y sus variaciones en el ordenamiento del Sistema Periódico apuntan a un hecho de singular importancia para el comportamiento químico de los distintos elementos. Esta es la situación de estabilidad, sinónimo de baja energía, de los sistemas electrónicos de los gases nobles. Estos sistemas tienen sus orbitales comprometidos, completos de electrones. La circunstancia que las moléculas de gases nobles son monoatómicas son la prueba de tal estabilidad, es decir, los átomos de los gases nobles no realizan intercambios electrónicos ni para formar iones ni para unirse con otros átomos pues sus configuraciones electrónicas son estables.

Tal concepto es reafirmado y a la vez explica el comportamiento de los átomos de los otros elementos. Estos realizan transferencias electrónicas para formar iones o formar moléculas de tal forma de alcanzar la configuración electrónica del gas noble más cercano. El tener niveles o subniveles electrónicos completos de electrones caracteriza el comportamiento de intercambio electrónico de los átomos de los distintos elementos.

Es así que los atomos ganan o pierden determinadas cantidades de electrones para completar niveles o subniveles alcanzando ciertas cargas eléctricas o estados de oxidación.
A continuación se señalan los estados de oxidación para átomos de elementos de presencia más corriente en un ordenamiento de grupos que, en parte, recuerda al del Sistema Periódico.


LA FORMACION DE LAS MOLECULAS
La formación de los iones o bién alcanzar ciertos estados de oxidación hay que observarlo como un proceso asociado entre distintos átomos y que conduce a la formación de las moléculas de las diferentes Sustancias Puras. Las fórmulas (atomicidades) de aquellas moléculas puede deducirse teniendo en cuenta el estado de oxidación de los iones estabilizados y fundamentalmente la necesidad que la estructura molecular resultante sea eléctricamente neutra. La atomicidad de un elemento se obtiene tomando en primer término el valor absoluto del estado de oxidación del átomo del otro elemento y viciversa, luego aquellas atomicidades se simplifican, de ser posible, llegándose a las definitivas.


M(+m) n N (-n) m


M = Metal N = No Metal




TIPOS DE COMPUESTOS FUNDAMENTALES
OXIDOS METALICOS
M 0 + O 0 2 ________ > M +m 2 O –2m
OXIDOS NO METALICOS ( antes ANHIDRIDOS)
N 0 + O 0 2 _________> N +n2 O –2n
LOS HIDRÓXIDOS (OXIDO METALICO+ AGUA)
M +m2 O -2m + m H+12 O-2 = 2 M+m ( O-2 H+1)m
LOS OXACIDOS ( OXIDO NO METALICO + AGUA)
N +n 2 O -2n + H+12 O -2 = H+12 N+n2 O-2n+1

LOS HIDRACIDOS (HIDROGENO +NO METALES)
n H 02 + N 02 = 2 H+1n N – n



LOS ACIDOS Y LAS BASES
Mejor que un nuevo tipo de compuestos habría que señalar que son compuestos que poseen una propiedad relacionada a la reacción de disociación del agua y a los iones que allí son liberados:


H2O


H2O = H + + OH –


ión hidrógeno ión hidroxilo


ACIDOS son sustancias de fórmula general HA que se disocian en agua liberando el ión hidrógeno


H2O


HA = H + + A –


ácido ión hidrógeno anión del ácido


Así se comportan los oxácidos y los hidrácidos:


Ejemplos:


H 2 S O 4 = 2 H + + SO4 –2


Ácido sulfúr ico Anión sulf ato (1)


Observar como la denominación del ácido se transforma para el anión


oso _____________> ito


ico _____________> ato


H 2 S = 2 H + + S –2


Ácido sulf hídrico Anión sulf uro


Observar como la denominación del ácido se transforma para el anión


hídrico ___________> uro


BASES son sustancias de fórmula general BOH que se disocian en agua liberando el ión hidroxilo.


H20


BOH = B + + OH –


base catión de la base ión hidroxilo


Así se comportan los hidróxidos:


Ejemplo:


u ( O H ) 2 = Cu+2 + 2 OH -


catión cúprico (1)


Anión es un ión de carga negativa y Catión es un ión de carga positiva. Los nombres provienen de la Electroquímica




LAS SALES ( RESULTADO DE LA REACCION DE ACIDOS + BASES)
OXÁCIDOS + BASES = SAL + AGUA
m H+12 N+n2 O-2n+1 + 2 M+m ( O H )- m = M+m2 ( ( N+n2 O-2n+1 ) –2)m + 2m H2O


LOS HIDRUROS ( IONES METALICOS CON IONES HIDRUROS)
M0 + m /2 H02 = M+m H -m

Principio de Avogadro



"En volumenes iguales, de cualquier gas, medidos en iguales
condiciones de P y T existe igual número de moléculas."

Avogadro razona:
Si las temperaturas son iguales, las magnitudes de los impactos son iguales (m v = m’v’, la molécula liviana se mueve rápido y la pesada se mueve lento) y si las presiones son iguales, el número de Impactos ( número de moléculas) son iguales.


La Hipótesis de Avogadro no sólo explica los experimentos de Gay Lussac y permite conocer la fórmula de las moléculas de gases simples, sino que permite, pesando volumenes iguales de diferentes gases medidos en iguales condiciones de P y T donde hay igual número de átomos, establecer la primera relación de masas de los diferentes átomos.

Estos pesos permitieron las relaciones de la Ley de las Proporciones Recíprocas, que junto a otras reglas, permitieron conocer la masa relativa de otros átomos como los de elementos metálicos.

Avogadro, cuando presentó su hipótesis en 1811, era un joven desconocido y su aporte no fue reconocido sino hasta el 1858 cuando la fuerza de lo verdadero se impuso. Medio siglo de masiva dependencia intelectual y carencia de espíritu crítico, situación incomprensible e inaceptable entre quienes se supone hacen la Ciencia.

ESTUDIO DE LOS ATOMOS
La materia y la Electricidad:

Diferentes experimentos demuestran la existencia de dos tipos de electricidad, se les denomina la positiva y la negativa. Si dos cuerpos poseen igual tipo de carga se repelen en tanto que si tienen cargas de distinto signo se atraen.



En sus experimentos de electrólisis, Faraday determinó la proporcionalidad entre la cantidad de sustancias transformadas y la cantidad de electricidad empleada. Surge la noción que la corriente eléctrica es un flujo de partículas que se les llamó electrones.



LAS PARTICULAS INTRATOMICAS FUNDAMENTALES

Rutherford, bombardea una lámina de oro, con rayos a ( partículas "pesadas", cargadas positivamente).



Rutherford concluye que la lámina de oro es prácticamente vacía, o mejor, el átomo de oro concentra toda su masa en un núcleo de carga positiva de volumen muy pequeño en relación al volumen atómico total.

Comprende la presencia en el núcleo del átomo, de los protones, partículas cargadas positivamente y de masa mayor que la del electrón y que ya habían sido detectadas con el tubo de Thompson. También se comprende la presencia en el nucleo de los neutrones, partículas de igual masa que el protón pero sin carga eléctrica.

El nucleo, por la presencia de los protones, tiene carga positiva y por esta razón atrae los electrones (cargas negativas) que giran a su alrededor en órbitas semejantes, en una primera aproximación a las órbitas planetarias del sistema solar.

LA VISION ATOMICA DE RUTHERFORD


DEFINICIONES
NÚMERO ATÓMICO = NÚMERO DE PROTONES = Z

NÚMERO MÁSICO = NÚMERO DE PROTONES + NÚMERO DE NEUTRONES = A

CARGA ELECTRICA = NÚMERO DE PROTONES - NÚMERO DE ELECTRONES

1 unidad de masa atómica, 1 (u.m.a.), equivale a 1/12 de la masa del átomo de 12C.

1 unidad de masa atómica prácticamente coincide con la masa de un protón o de un neutrón.

1 (u.m.a.) = 1, 67 . 10 - 24 ( g ).


ALGUNOS ELEMENTOS, SUS ATOMOS Y ALGUNOS DE SUS ISOTOPOS
Isótopos son átomos de igual Z pero distinto A.
Isobaros son átomos de distinto Z pero igual A


DETERMINACIÓN DE LOS PESOS ATOMICOS O PESOS RELATIVOS
La existencia de isótopos (átomos de distinta masa) en todos los elementos debe ser tomada en cuenta cuando se trata de determinar las relaciones de los pesos de los átomos. En la actualidad es posible conocer los distintos tipos de isótopos que presenta un elemento en su estado natural y además es posible saber en que proporción o cantidad se encuentran gracias a la tecnología del espectrógrafo de masas.




Espectrógrafo de masas:

El espectrógrafo de masas es un aparato en que por descargas eléctricas los átomos de un elemento se transforman en iones positivos. Estos iones son conducidos a la forma de un haz lineal hasta una zona en que son desviados mediante dispositivos magnéticos o eléctricos de acuerdo a la masa del ión ( los iones más pesados se desvían menos ). Así los iones en diferentes haces según su masa son detectados y cuantificados.

El Peso Atómico relativo se calcula de la siguiente manera:
A r = A1 * X1 + A2 * X2 + .............
Donde los A i son los Números Másicos o bién la masa en Unidades de Masa Atómica ( u.m.a.) de los distintos Isótopos y los X = % abundancia / 100
Ejemplo de cálculo del Peso Atómico
El Neón tiene dos isótopos.
El 20 Ne que tiene una masa de 19,992 u.m.a. y el 22Ne que tiene una masa de 21,991 u.m.a.
Por cada 100 atomos de la muestra natural 90 corresponden al 20Ne y 10 al 22 Ne, es decir, sus abundancias relativas son de 90% y 10% respectivamente.
El cálculo del Peso Atómico será:
PA Ne = 0.90 * ( 19,992 u.m.a.) + 0,10 * ( 21,991 u.m.a.) = 20 , 192 u.m.a.

domingo, 27 de marzo de 2011

Métodos de separación de mezclas (incluye imágenes)

A diferencia de los compuestos, una mezcla está formada por la unión de sustancias en cantidades variables y que no se encuentran químicamente combinadas. Por lo tanto, una mezcla no tiene un conjunto de propiedades únicas, sino que cada una de las sustancias constituyentes aporta al todo con sus propiedades específicas.
Las mezclas están compuestas por una sustancia, que es el medio, en el que se encuentran una o más sustancias en menor proporción. Se llama fase dispersante al medio y fase dispersa a las sustancias que están en él.
Ejemplo: Agua con azúcar
Agua → el medio → fase dispersante
Azúcar → fase dispersa

De acuerdo al tamaño de las partículas de la fase dispersa, las mezclas pueden serhomogéneas o heterogéneas.

a) Mezclas homogéneas: Son aquellas cuyos componentes no son identificables a simple vista, es decir, se aprecia una sola fase física.
Ejemplo:El agua potable es una mezcla homogénea de agua (fase dispersante) y varias sales minerales (fase dispersa). Sin embargo, no vemos las sales que están disueltas; sólo observamos la fase líquida.

Entre las mezclas homogéneas se distingue una de gran interés: la solución o disolución química.

b) Mezclas heterogéneas: Son aquellas cuyos componentes se pueden distinguir a simple vista, apreciándose más de una fase física.
Ejemplo: Agua con piedra, agua con aceite.

Las mezclas heterogéneas se pueden agrupar en: emulsiones, suspensiones y coloides.

Emulsiones: Conformada por 2 fases líquidas inmiscibles. Ejemplo: agua y aceite, leche, mayonesa.

Suspensiones: Conformada por una fase sólida insoluble en la fase dispersante líquida, por lo cual tiene un aspecto opaco. Las partículas dispersas son relativamente grandes. Ejemplo: Arcilla, tinta china (negro de humo y agua), pinturas al agua, cemento.

Coloides o soles: Es un sistema heterogéneo en donde el sistema disperso puede ser observado a través de un ultramicroscopio.

Técnicas de separación de mezclas
Independiente del tipo de mezcla, los componentes de la misma, pueden ser separados con cierta facilidad a través de las técnicas de laboratorio, sin que cambien las propiedades físicas y químicas que estos tienen. A continuación describiremos las técnicas más usadas por los químicos:

Filtración: A través de materiales porosos como el papel filtro, algodón o arena se puede separar un sólido que se encuentra suspendido en un líquido. Estos materiales permiten solamente el paso del líquido reteniendo el sólido.
Extracción: Esta técnica de separación se basa en las diferentes afinidades de los componentes de las mezclas en dos solventes distintos y no solubles entre sí. Es una técnica muy útil para aislar cada sustancia de sus fuentes naturales o de una mezcla de reacción.La técnica de extracción simple es la más común y utiliza un embudo especial llamado embudo de decantación.

Destilación: Técnica utilizada para purificar un líquido o separar los líquidos de una mezcla líquida. Comprende dos etapas: transformación del líquido en vapor y condensación del vapor.

Cromatografía: Técnica que permite separar los componentes de una mezcla haciéndola pasar a través de un medio adsorbente (adhesión a una superficie). Una de las más sencillas es la cromatografía en papel que emplea como medio adsorbente papel filtro y como solvente un líquido.Los distintos componentes se separan debido a que cada uno de ellos manifiesta diferentes afinidades por el papel filtro o por el disolvente.


Tamizado: Este método de separación es uno de los más sencillos y consiste en hacer pasar una mezcla de sólidos, de distinto tamaño, a través de un tamiz. Los granos más pequeños atraviesan el tamiz y los más grandes son retenidos.

Datos Química

-Química es la ciencia que estudia las sustancias puras.

-La ciencia es el conocimiento obtenido a través del llamado método científico.

-Método Científico por su parte es un método natural, ordenado, racional y sistemático de obtener el conocimiento.

Moléculas:

-Si las moléculas están desordenadas son liquido o gas, en cambio si están muy ordenadas es un sólido.

-Propiedades direccionales---> Anisotropía
-Propiedades adireccionales---> Isotropía

-El punto triple del agua(donde está en los 3 estados) es a 0,0075°C